
 ⋐ Boggle Solver Algorithm ⋑
 September 12, 2024

 - Written By -
 Nile Roth

 - Professor -
Tayyaba Shaheen

mailto:ts2434@nau.edu
https://coolsymbol.com/copy/Double_Subset_Symbol_%E2%8B%90
https://coolsymbol.com/copy/Double_Superset_Symbol_%E2%8B%91

 2

 Table of Contents

 Table of Contents 2
 1 Algorithm Overview 3

 1.1 runBoard() 3
 1.1.1 | loadBoard() 3
 1.11.2 | readDictionary() 3
 1.11.3 | runBoardHelper() 3
 1.11.4 | examineState() 4
 1.11.5 | possibleMoves() 4
 1.11.6 | legalMoves() 4

 2 Testing 5
 2.1 Results From 2x2 Board 5
 2.1.1 | Board 5
 2.1.2 | Output 5
 2.1.3 | Key Results 5
 2.2 Results From 3x3 Board 6
 2.2.1 | Board 6
 2.2.2 | Output 6
 2.2.3 | Key Results 6
 2.3 Results From 4x4 Board 7
 2.3.1 | Board 7
 2.3.2 | Output 7
 2.3.3 | Key Results 7
 2.4 Projections 8

 3 Problem Analyzation 12
 4 Problem Optimization 13

 3

 1 Algorithm Overview

 1.1 runBoard()
 This Boggle Solver Algorithm runs with the call of our main runBoard() function. The

 main function takes in two text files, the board and a dictionary. In order to work with the text
 contained in the board file, we must load it into a data structure that we can easily access/analyze
 (see 1.1.1). The same idea needs to be implemented with the dictionary as well. We need to bring
 the words in the text file dictionary into memory for future comparison (see 1.1.2). Now that we
 have both the board and dictionary loaded into memory we can begin our recursive search. In
 order to recurse without repeatedly loading in the board and dictionary, we must create a
 recursive subfunction. This function will handle the entire search process which starts by calling
 the recursive runBoardHelper() function on each element of the board. Because
 runBoardHelper() recurses with each neighbor of the current position, we ensure that all paths on
 the board are searched. All information about the recursive algorithm and how it works is
 presented in section 1.1.3.

 1.1.1 | loadBoard()
 loadBoard is an essential function that allows us to work with the board text file. The

 most useful data structure to store our board is a 2-dimensional array, so that we can access
 elements (letters) through a [row][col] format. This process simply involves opening the file,
 reading in each line into an array of characters using .strip().split(). More specifically, each line
 is stripped of its whitespace and split up into a list of individual letters, and because there are
 multiple lines (rows) in a file, the result is a list of lists (2D array).

 1.11.2 | readDictionary()
 readDictionary is the most simple function in the algorithm, for it only requires creating a

 1D list. Similar to loadBoard(), after opening the file, we use Python’s built-in readLines
 function to convert each line of the file into a list element. All that is left is to strip away any
 trailing whitespace from all words read in from the file. We accomplish all of this with a loop
 through the output of readlines along with a call to strip() for each element.

 1.11.3 | runBoardHelper()
 I decided to implement an embedded function so that it could share memory with the

 outer main function. This eliminates the need to pass in the dictionary, board, wordList, nor the
 wordCount into the recursive function. Instead, we only need to pass it a current position, along
 with a path of visited positions. We start off each recursion by examining our current state to see

 4

 if our path forms a word with our current position (see 1.1.4). If examineState() identifies a
 word, we add it to our wordList (a list of all words found on the board). Lastly we loop our
 recursive call with all possible neighbors. Possible moves consist of all neighbors of the current
 position that have not yet been visited (see 1.15 & 1.16).

 1.11.4 | examineState()
 This function uses the parameters of the recursive function (current position & visited

 path) to check if we have formed a word. To check for a word, we start by concatenating our path
 of letters into a string and appending our current position letter to that string. The string formed
 is our current state. Next, we simply check if this string is in our dictionary list. Depending on
 whether it is in the dictionary or not we return either ‘yes’ or ‘no’ along with the current string
 formed.

 1.11.5 | possibleMoves()
 This function takes in the 2D array board along with a current position on that board. It

 simply returns the neighbor positions of the parameter keeping in mind to not go off the grid.
 This is done by simply checking if the row/col value plus/minus one is greater than -1 or less
 than the grid size. In simpler terms, this function returns all neighbor positions of the parameter
 position that are on the grid.

 1.11.6 | legalMoves()
 legalMoves is basically an add-on to the possibleMoves function. We know that the grid

 is not our only boundary, we also cannot visit positions that have already been visited. For this
 reason the parameters of this function include both a call to possibleMoves as well as a list of
 visited moves. The idea is to remove all elements from the possibleMoves list that are also in the
 visited list. The result is all legal moves that a path can continue recursing through.

 5

 2 Testing

 2.1 Results From 2x2 Board

 2.1.1 | Board

 2.1.2 | Output

 2.1.3 | Key Results
 50 paths
 9 words
 0.48 seconds

 6

 2.2 Results From 3x3 Board

 2.2.1 | Board

 2.2.2 | Output

 2.2.3 | Key Results
 356 paths
 15 words
 4.60 seconds

 7

 2.3 Results From 4x4 Board

 2.3.1 | Board

 2.3.2 | Output

 2.3.3 | Key Results
 2256 paths
 56 words
 26.62 seconds

 8

 2.4 Projections

 2.4.1 | Runtime
 With the results from sections 2.1-2.3, I used ordered pairs with x-values representing N

 (board dimension) and y-values representing time in seconds to create a system of equations.
 Each equation is created using the quadratic formula.

 Y = a + b + c 𝑥 2 𝑥

 Ordered pairs:
 (2 , 0.48)
 (3 , 4.6)
 (4 , 26.62)

 Give us the following systems of equations:
 4a+2b+c=0.48
 9a+3b+c=4.69
 16a+4b+c=26.62

 Which when solved provides us with:

 Y = 8.95 − 40.63x + 45.94 for 𝑥 2 𝑥 > 0

 9

 Plugging in the value 5 for x will provide an estimated runtime for completing the search on a
 5x5 boggle board.

 Runtime for 5x5 board = 8.95 − 40.63 (5) + 45.94 (5) 2
 8.95(25) - 203.15 + 45.94
 223.75 - 157.21 = 66.54 seconds

 10

 2.4.2 | Search Count
 With the results from sections 2.1-2.3, I used ordered pairs with x-values representing N

 (board dimension) and y-values representing number of searches to create a system of equations.
 Each equation is created using the quadratic formula.

 Y = a + b + c 𝑥 2 𝑥

 Ordered pairs:
 (2 , 50)
 (3 , 356)
 (4 , 2256)

 Give us the following systems of equations:
 4a+2b+c=50
 9a+3b+c=356
 16a+4b+c=2256

 Which when solved provides us with:

 Y = 797 − 3679x + 4220 for 𝑥 2 𝑥 > 0

 11

 Plugging in the value 5 for x will provide an estimated amount of searches for completing the
 search on a 5x5 boggle board.

 Search Count for 5x5 board = 797 − 3679 (5) + 4220 (5) 2
 797(25) - 18,395 + 4220
 19,925 - 14,175 = 5,750 searches

 12

 3 Problem Analyzation

 Computing the number of possible combinations of letters from a boggle board is a very
 complex problem, but can be computed easily using our written recursive algorithm. To compute
 this value manually, it is more feasible to come up with a decent upper bound than to find an
 exact value.

 To start lets disregard the borders and assume each element has 8 neighbors to traverse to.

 The longest path an element can take is NxN or . With these two facts in mind lets first 𝑁 2

 determine the number of 2-letter paths a single element can search. Because an element
 hypothetically has 8 neighbors, then each element has 8 ways of creating a 2-letter path. For
 3-letter combinations, we now have 8 more neighbors to choose from for each of those 2-letter
 combinations. This gives us ways of creating a 3-letter path. We can now derive a pattern 8 * 8

 2-letter paths: 8 ways per element

 3-letter paths: ways per element 8 2

 4-letter paths: ways per element 8 3

 Because our paths can have a length up to we can write a simple summation equation with 𝑁 2

 our findings above

 Where L represents the length of a word, and N is dimension of the board
 𝐿 = 2

 𝑁 2

∑ 8 𝐿 − 1

 The equation above provides us with an upper bound for the amount of paths from a single
 element. In order to calculate the total amount of paths from all elements, we simply multiply

 this by the amount of elements on the board which is consistently . 𝑁 2

 * 𝑁 2

 𝐿 = 2

 𝑁 2

∑ 8 𝐿 − 1

 This is a decent upper bound, but it does not take into account that not all elements have 8
 neighbors. For this reason, this equation will be progressively more accurate as the dimension of
 the board increase (when more elements have 8 neighbors). When calculating number of paths
 for any board with a dimension it is more accurate to change the number of neighbors 𝑁 ≤ 5
 from 8 to 6 (more accurate average of neighbors).

 13

 4 Problem Optimization

 A rational player would discontinue searching a path if at any time it is not a prefix of
 another word. For example if a player is searching paths starting from element ‘j’, they would
 not waste their time traversing into the neighboring element ‘t’ because of how little words start
 with ‘jt’. In order to implement this, I simply added a conditional into the recursive function to
 check if our current sequence of letters is not a substring of any word in the dictionary. If it isn’t
 then we should stop searching that path. After adding this to my recursive function, I
 experienced a significant increase in speed. For a 4x4 board, the runtime diminished from 40
 minutes to 30 seconds.

 Another way a player could maximize their points is by prioritizing words containing
 more letters. Generally, a search through the board follows more of a Breadth-First algorithm
 (from a certain element searching all 2-letters words, then 3-letter words, and so on). When
 trying to get the longest words we can instead follow a Depth-First search. We can traverse a full

 long path and search for words embedded inside of this string. This gives us the opportunity 𝑁 2

 to find longer words right from the start.
 My last optimization recommendation is to search for post-fix letters and combinations to

 add to any found word. When finding any word, search for an ‘s’ neighboring the last element to
 get its plural (noun) or past tense (verb) version. We can also look for an ‘ed’ to add to the end of
 our word to make it past tense. When finding these letters to add onto a word, we increase the
 score for the given word by more than double.

