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 1 Algorithm Overview 

 1.1 runBoard() 
 This  Boggle  Solver  Algorithm  runs  with  the  call  of  our  main  runBoard()  function.  The 

 main  function  takes  in  two  text  files,  the  board  and  a  dictionary.  In  order  to  work  with  the  text 
 contained  in  the  board  file,  we  must  load  it  into  a  data  structure  that  we  can  easily  access/analyze 
 (see  1.1.1).  The  same  idea  needs  to  be  implemented  with  the  dictionary  as  well.  We  need  to  bring 
 the  words  in  the  text  file  dictionary  into  memory  for  future  comparison  (see  1.1.2).  Now  that  we 
 have  both  the  board  and  dictionary  loaded  into  memory  we  can  begin  our  recursive  search.  In 
 order  to  recurse  without  repeatedly  loading  in  the  board  and  dictionary,  we  must  create  a 
 recursive  subfunction.  This  function  will  handle  the  entire  search  process  which  starts  by  calling 
 the  recursive  runBoardHelper()  function  on  each  element  of  the  board.  Because 
 runBoardHelper()  recurses  with  each  neighbor  of  the  current  position,  we  ensure  that  all  paths  on 
 the  board  are  searched.  All  information  about  the  recursive  algorithm  and  how  it  works  is 
 presented in section 1.1.3. 

 1.1.1 | loadBoard() 
 loadBoard  is  an  essential  function  that  allows  us  to  work  with  the  board  text  file.  The 

 most  useful  data  structure  to  store  our  board  is  a  2-dimensional  array,  so  that  we  can  access 
 elements  (letters)  through  a  [row][col]  format.  This  process  simply  involves  opening  the  file, 
 reading  in  each  line  into  an  array  of  characters  using  .strip().split().  More  specifically,  each  line 
 is  stripped  of  its  whitespace  and  split  up  into  a  list  of  individual  letters,  and  because  there  are 
 multiple lines (rows) in a file, the result is a list of lists (2D array). 

 1.11.2 | readDictionary() 
 readDictionary  is  the  most  simple  function  in  the  algorithm,  for  it  only  requires  creating  a 

 1D  list.  Similar  to  loadBoard(),  after  opening  the  file,  we  use  Python’s  built-in  readLines 
 function  to  convert  each  line  of  the  file  into  a  list  element.  All  that  is  left  is  to  strip  away  any 
 trailing  whitespace  from  all  words  read  in  from  the  file.  We  accomplish  all  of  this  with  a  loop 
 through the output of readlines along with a call to strip() for each element. 

 1.11.3 | runBoardHelper() 
 I  decided  to  implement  an  embedded  function  so  that  it  could  share  memory  with  the 

 outer  main  function.  This  eliminates  the  need  to  pass  in  the  dictionary,  board,  wordList,  nor  the 
 wordCount  into  the  recursive  function.  Instead,  we  only  need  to  pass  it  a  current  position,  along 
 with  a  path  of  visited  positions.  We  start  off  each  recursion  by  examining  our  current  state  to  see 
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 if  our  path  forms  a  word  with  our  current  position  (see  1.1.4).  If  examineState()  identifies  a 
 word,  we  add  it  to  our  wordList  (a  list  of  all  words  found  on  the  board).  Lastly  we  loop  our 
 recursive  call  with  all  possible  neighbors.  Possible  moves  consist  of  all  neighbors  of  the  current 
 position that have not yet been visited (see 1.15 & 1.16). 

 1.11.4 | examineState() 
 This  function  uses  the  parameters  of  the  recursive  function  (current  position  &  visited 

 path)  to  check  if  we  have  formed  a  word.  To  check  for  a  word,  we  start  by  concatenating  our  path 
 of  letters  into  a  string  and  appending  our  current  position  letter  to  that  string.  The  string  formed 
 is  our  current  state.  Next,  we  simply  check  if  this  string  is  in  our  dictionary  list.  Depending  on 
 whether  it  is  in  the  dictionary  or  not  we  return  either  ‘yes’  or  ‘no’  along  with  the  current  string 
 formed. 

 1.11.5 | possibleMoves() 
 This  function  takes  in  the  2D  array  board  along  with  a  current  position  on  that  board.  It 

 simply  returns  the  neighbor  positions  of  the  parameter  keeping  in  mind  to  not  go  off  the  grid. 
 This  is  done  by  simply  checking  if  the  row/col  value  plus/minus  one  is  greater  than  -1  or  less 
 than  the  grid  size.  In  simpler  terms,  this  function  returns  all  neighbor  positions  of  the  parameter 
 position that are on the grid. 

 1.11.6 | legalMoves() 
 legalMoves  is  basically  an  add-on  to  the  possibleMoves  function.  We  know  that  the  grid 

 is  not  our  only  boundary,  we  also  cannot  visit  positions  that  have  already  been  visited.  For  this 
 reason  the  parameters  of  this  function  include  both  a  call  to  possibleMoves  as  well  as  a  list  of 
 visited  moves.  The  idea  is  to  remove  all  elements  from  the  possibleMoves  list  that  are  also  in  the 
 visited list. The result is all legal moves that a path can continue recursing through. 
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 2 Testing 

 2.1 Results From 2x2 Board 

 2.1.1 | Board 

 2.1.2 | Output 

 2.1.3 | Key Results 
 50 paths 
 9 words 
 0.48 seconds 
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 2.2 Results From 3x3 Board 

 2.2.1 | Board 

 2.2.2 | Output 

 2.2.3 | Key Results 
 356 paths 
 15 words 
 4.60 seconds 
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 2.3 Results From 4x4 Board 

 2.3.1 | Board 

 2.3.2 | Output 

 2.3.3 | Key Results 
 2256 paths 
 56 words 
 26.62 seconds 
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 2.4 Projections 

 2.4.1 | Runtime 
 With  the  results  from  sections  2.1-2.3,  I  used  ordered  pairs  with  x-values  representing  N 

 (board  dimension)  and  y-values  representing  time  in  seconds  to  create  a  system  of  equations. 
 Each equation is created using the quadratic formula. 

 Y = a  + b  + c  𝑥  2  𝑥 

 Ordered pairs: 
 (2 , 0.48) 
 (3 , 4.6) 
 (4 , 26.62) 

 Give us the following systems of equations: 
 4a+2b+c=0.48 
 9a+3b+c=4.69 
 16a+4b+c=26.62 

 Which when solved provides us with: 

 Y = 8.95  − 40.63x + 45.94 for  𝑥  2     𝑥 >     0 
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 Plugging  in  the  value  5  for  x  will  provide  an  estimated  runtime  for  completing  the  search  on  a 
 5x5 boggle board. 

 Runtime for 5x5 board =  8.95  − 40.63  (5)  + 45.94 ( 5 ) 2    
 8.95(25) - 203.15 + 45.94 
 223.75 - 157.21                       =  66.54 seconds 
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 2.4.2 | Search Count 
 With  the  results  from  sections  2.1-2.3,  I  used  ordered  pairs  with  x-values  representing  N 

 (board  dimension)  and  y-values  representing  number  of  searches  to  create  a  system  of  equations. 
 Each equation is created using the quadratic formula. 

 Y = a  + b  + c  𝑥  2  𝑥 

 Ordered pairs: 
 (2 , 50) 
 (3 , 356) 
 (4 , 2256) 

 Give us the following systems of equations: 
 4a+2b+c=50 
 9a+3b+c=356 
 16a+4b+c=2256 

 Which when solved provides us with: 

 Y = 797  − 3679x + 4220 for  𝑥  2     𝑥 >     0 
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 Plugging  in  the  value  5  for  x  will  provide  an  estimated  amount  of  searches  for  completing  the 
 search on a 5x5 boggle board. 

 Search Count for 5x5 board =  797  − 3679  (5)  + 4220 ( 5 ) 2    
 797(25) - 18,395 + 4220 
 19,925 - 14,175                       =  5,750 searches 
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 3 Problem Analyzation 

 Computing  the  number  of  possible  combinations  of  letters  from  a  boggle  board  is  a  very 
 complex  problem,  but  can  be  computed  easily  using  our  written  recursive  algorithm.  To  compute 
 this  value  manually,  it  is  more  feasible  to  come  up  with  a  decent  upper  bound  than  to  find  an 
 exact value. 

 To  start  lets  disregard  the  borders  and  assume  each  element  has  8  neighbors  to  traverse  to. 

 The  longest  path  an  element  can  take  is  NxN  or  .  With  these  two  facts  in  mind  lets  first  𝑁  2 

 determine  the  number  of  2-letter  paths  a  single  element  can  search.  Because  an  element 
 hypothetically  has  8  neighbors,  then  each  element  has  8  ways  of  creating  a  2-letter  path.  For 
 3-letter  combinations,  we  now  have  8  more  neighbors  to  choose  from  for  each  of  those  2-letter 
 combinations. This gives us  ways of creating a 3-letter path. We can now derive a pattern  8 *  8 

 2-letter paths: 8 ways per element 

 3-letter paths:  ways per element  8  2 

 4-letter paths:  ways per element  8  3 

 Because  our  paths  can  have  a  length  up  to  we  can  write  a  simple  summation  equation  with  𝑁  2 

 our findings above 

 Where L represents the length of a word, and N is dimension of the board 
 𝐿 = 2 

 𝑁  2 

∑  8  𝐿 − 1 

 The  equation  above  provides  us  with  an  upper  bound  for  the  amount  of  paths  from  a  single 
 element.  In  order  to  calculate  the  total  amount  of  paths  from  all  elements,  we  simply  multiply 

 this by the amount of elements on the board which is consistently  .  𝑁  2 

 *  𝑁  2 

 𝐿 = 2 

 𝑁  2 

∑  8  𝐿 − 1 

 This  is  a  decent  upper  bound,  but  it  does  not  take  into  account  that  not  all  elements  have  8 
 neighbors.  For  this  reason,  this  equation  will  be  progressively  more  accurate  as  the  dimension  of 
 the  board  increase  (when  more  elements  have  8  neighbors).  When  calculating  number  of  paths 
 for  any  board  with  a  dimension  it  is  more  accurate  to  change  the  number  of  neighbors  𝑁 ≤  5    
 from 8 to 6 (more accurate average of neighbors). 
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 4 Problem Optimization 

 A  rational  player  would  discontinue  searching  a  path  if  at  any  time  it  is  not  a  prefix  of 
 another  word.  For  example  if  a  player  is  searching  paths  starting  from  element  ‘j’,  they  would 
 not  waste  their  time  traversing  into  the  neighboring  element  ‘t’  because  of  how  little  words  start 
 with  ‘jt’.  In  order  to  implement  this,  I  simply  added  a  conditional  into  the  recursive  function  to 
 check  if  our  current  sequence  of  letters  is  not  a  substring  of  any  word  in  the  dictionary.  If  it  isn’t 
 then  we  should  stop  searching  that  path.  After  adding  this  to  my  recursive  function,  I 
 experienced  a  significant  increase  in  speed.  For  a  4x4  board,  the  runtime  diminished  from  40 
 minutes to 30 seconds. 

 Another  way  a  player  could  maximize  their  points  is  by  prioritizing  words  containing 
 more  letters.  Generally,  a  search  through  the  board  follows  more  of  a  Breadth-First  algorithm 
 (from  a  certain  element  searching  all  2-letters  words,  then  3-letter  words,  and  so  on).  When 
 trying  to  get  the  longest  words  we  can  instead  follow  a  Depth-First  search.  We  can  traverse  a  full 

 long  path  and  search  for  words  embedded  inside  of  this  string.  This  gives  us  the  opportunity  𝑁  2 

 to find longer words right from the start. 
 My  last  optimization  recommendation  is  to  search  for  post-fix  letters  and  combinations  to 

 add  to  any  found  word.  When  finding  any  word,  search  for  an  ‘s’  neighboring  the  last  element  to 
 get  its  plural  (noun)  or  past  tense  (verb)  version.  We  can  also  look  for  an  ‘ed’  to  add  to  the  end  of 
 our  word  to  make  it  past  tense.  When  finding  these  letters  to  add  onto  a  word,  we  increase  the 
 score for the given word by more than double. 


