
DBSCAN Parallelization on the GPU
1st Savannah Chappus

School of Informatics, Computing, and Cyber Systems
Northern Arizona University

Flagstaff, AZ, U.S.A.
sjc497@nau.edu

2nd Kaitlyn Deacon
College of Environment, Forestry, and Natural Sciences

Northern Arizona University
Flagstaff, AZ, U.S.A.

krd327@nau.edu

3rd Nile Roth
School of Informatics, Computing, and Cyber Systems

Northern Arizona University
Flagstaff, AZ, U.S.A.

ndr82@nau.edu

4th Adam Montano
School of Informatics, Computing, and Cyber Systems

Northern Arizona University
Flagstaff, AZ, U.S.A.

ajm2327@nau.edu

5th Tomas Jauregui
School of Informatics, Computing, and Cyber Systems

Northern Arizona University
Flagstaff, AZ, U.S.A.

taj262@nau.edu

Abstract—Algorithms that are capable of distinquishing be-
tween high and low density regions are especially benefitial
in machine learning and unsupervised data mining. There are
limitations to parallelizing the DBSCAN algorithm because of its
inherent sequential operation. We acknowledge other work in the
area, including that which parallelizes the algorithm for multi-
core CPUs and many-core GPUs. In this paper, we propose a
unique framework for GPU-accelerated density-based clustering
that takes advantage of integration between the CPU and the
GPU and navigates the sequential portions of the algorithm. In
comparison with other work on the algorithm, our approach
consists of four main aspects: (i) presorts the data to avoid
expensive computations through large datasets, (ii) effectively
divides work between the GPU and CPU to take advantage
of their individual strengths, (iii) takes advantage of additional
parameters to limit the searches for neighbors further than
presorting the data does, and (iv) leverages additional data
structures like the disjoint-set structure to effectively manage
clustering on the CPU in a time-sensitive fashion. Additionally,
we test our algorithm on two real-world datasets. Our optimized
algorithm achieves a 8x speedup over baseline parallel GPU
algorithm.

Index Terms—DBSCAN, GPU, Parallel Clustering, Arbitrary
Shape of Clusters, Efficiency on Large Spatial Datasets, Outlier
Detection, Disjoint Set Data Structure

I. INTRODUCTION

Clustering algorithms aim to organize data into clusters or
groups based on similarities and inherent patterns within the
data. They play important roles in processing and analyzing
datasets in many areas such as pattern recognition, machine
learning, and data mining by splitting a set of objects into
disjoint classes [2].

Density-Based Spacial Clustering of Applications with
Noise (DBSCAN) is a density-based clustering designed to
take advantage of constructing clusters with arbitrary shapes
[6], [7], [9], [10], [13]. This algorithm is efficient for large

spacial databases with its robust behavior to noise through the
use of epsilon and minPts parameters while omitting an input
parameter for a required number of clusters [7].

The breadth-first search nature of DBSCAN along with its
worst-case quadratic time complexity of O(n2) from distance
computations between every two points, makes parallelization
a challenge [7]. Due to the continuous increase in dataset
sizes where n is the number of points, this technique may
not scale well for large datasets [9]. Fortunately, there are
several approaches that aim to address that drawback in
part through spacial data structures to reduce the number of
distance calculations.

Previous research focusing on utilizing multi-core CPU and
GPU architectures to exploit the advantage of parallel com-
puting, are readily available within a wide range of computer
types. These existing works approach the scalability issues in
a variety of ways ranging from spatial data structures like R-
trees to the NVIDIA library of CUDA-DClust+ [2], [8], [12].

However, choosing the best GPU algorithm for a specific
application is challenging and there is a lack of bench-marking
and different datasets are used across previous studies [6]–[10],
[13]. This paper reviews the existing DBSCAN algorithms
specifically designed for GPUs and presents an experimental
study of GPU-accelerated DBSCAN algorithm. For testing
purposes, there were three datasets used: one generated dataset
and two real-world datasets of over one billion data points
pertaining to annual snowfall metrics and asteroid locations.

The paper is organized as follows: Section II establishes
background information. Section III presents the algorithm
and composed optimizations. Section IV displays performance
results. Finally, Section V discusses indicated results and
concludes the paper.

II. BACKGROUND

A. G-DBSCAN: An Overview
The Density Based Spatial Clustering of Applications with

Noise (DBSCAN) algorithm is, as the name implies, clusters
data using density specifications. Less-dense regions consider
points as noise or outliers, while dense regions cluster points
together according to parameter guidelines [9]. The minPts
parameter indicates a point-density threshold, while the Ep-
silon (ϵ) parameter specifies a qualifying search distance to
indicate a cluster region [9] [10]. However, since DBSCAN
is inherently sequential, this severely limits parallelization
opportunities [1], [10]–[12].

A concept proposed based on the original DBSCAN algo-
rithm and clustering on GPUs is known as G-DBSCAN. This
implementation strategy is divided into two steps: constructing
density connections corresponding to the dataset in a graph-
format and performing multiple breadth-first searches over the
density graphs [6]. A drawback of the GPU is its limited global
memory capacity, resulting in datasets that exceed global
memory capacity and as such, must be divided into n partitions
[1], [10].

B. Previous Studies of DBSCAN
There have been many studies addressing optimizations of

DBSCAN to improve its efficiency including parallel multi-
core CPU approaches [1], [6], [8], [12], though we will focus
on ones directly related to GPU-accelerations.

Hybrid CPU/GPU Algorithm: One such optimization of
DBSCAN introduces Hybrid-DBSCAN that utilizes both the
GPU and CPUs to optimize throughput clustering [11]. The
key innovation is leveraging the GPU’s memory bandwidth
for rapid index searching. In addition to memory leveraging,
Hybrid-DBSCAN also manages data transfers between the
GPU and the host to efficiently mitigate the negative impacts
of memory buffers that incur a significant amount of allocation
overhead from a large number of transfer batches [10].

Disjoint Set Data Structure: Proposed by Patwary et
al. [1], a distributed-memory, multi-core DBSCAN algorithm
based on the CPU had a major contribution by concurrently
clustering a dataset in parallel with multiple processes cluster-
ing their own points [10]. The clusters were then merged into
their final global clusters after all processes identified their
local data points. This approach relied on using the disjoint
set data structure where each point is considered to be within
its own cluster initially [1], [7], [10], [12].

CUDA-DClust Implementation: A GPU-accelerated DB-
SCAN algorithm with several optimizations aims to improve
performance by increasing efficiency of data mining interfaces
that identify high and low-density regions [13]. Such enhance-
ment is achieved by creating chains of points or sub-clusters
that are density-reachable from each other (ie., they can be
navigated by chaining together points that share neighbors
with one another). This study computes the indexing structure
on the GPU and utilizes kernel fusions for cluster expansion
and index search combinations. This helps to reduce com-
munication and overhead host synchronization. Our methods

did not include CUDA-DCLUST+ however, by addressing the
limitations of earlier designs it has significantly enhanced the
efficiency and scalability of DBSCAN clustering for large
datasets [7], [9], [11], [13].

III. DESCRIPTION OF METHODS USED TO APPROACHING
THE PROBLEM

In this section we present our algorithm, GDBSCAN, that
leverages the design of the DBSCAN clustering algorithm
and the advantages of GPU-accelerated parallelization appli-
cations.

A. CPU Implementation

The CPU algorithm serves as a baseline for testing optimiza-
tions such as the GPU accelerations. It uses a sequential linear
search to find the neighbors of each data point and construct
a corresponding cluster array with a unique ID for each point
by counting its respective neighbors. For ease of clustering, a
disjoint-set data structure is used for refining the decision of
merging points that belong to the same cluster.

TABLE I: Primary Notation of Variables used in this Study 1

Variable Definition
epsilon (ϵ) qualifying distance radius between

points for cluster regions
minPts minimum number of neighbors required

to define a core point
DIM dimensionality of each point in the

dataset
N number of points in dataset

pi = {p1i , p2i , ..., pDIM
i } (1)

sortedDim primary index of dimension on which
the dataset is sorted

Core Point point p that has at least minPts points
within distance ϵ

Neighbor Point point p that is within a specified dis-
tance ϵ from a core point

Border Point point p which has fewer than minPts
points within distance ϵ but is in the
neighborhood of a core point

Noise Point point p which is neither a border point
or a core point

B. Baseline Kernel Implementation

In the baseline GPU implementation, the algorithm performs
the neighbor search in parallel, with each thread representing
a point in the dataset. This allows for concurrent calculation of
neighbors compared to the entire dataset. After the GPU com-
pletes this kernel, it proceeds to create the neighborsArray for
each point and assigns them to their respective clusters. Next,

1For ϵ and minPts, it is important to note that too large of an ϵ or too small
of a value for minPts may result in a single cluster.

each point’s array is processed by a thread on the GPU. Finally,
after the GPU kernel completes its execution, the algorithm
returns to a CPU kernel which handles combining clusters
with common points using the disjoint-set data structure. Here,
clusters are combined and reassigned based on the similarity
of neighbors. Below is a detailed explanation of the kernels
used in this implementation.

getNeighborFreqs: This kernel is step one of two for
creating the neighbor array for the dataset. getNeighborFreqs
is called with as many threads as there are points in the
dataset. This allows for an easy division of labor (one thread
per element), and each thread compares its designated point
to each other point in the dataset. It does this by getting the
difference in each dimension and running the distance formula
between the two points. In each of these comparisons, the
thread checks if the distance between the two points is less
than the provided ϵ value. If it is, then these two points are
considered neighbors, and it is stored in that threads local
array of their designated point’s neighbors. With this array
we can easily count how many neighbors each thread (each
point) has. Each thread stores their neighbors count into the
neighborFreqs array (see example 2). We must return from
this kernel now so that we can ensure all threads in the grid
complete their input in the neighborFreqs array before filling
the neighbor position array.

getNeighborsArr: Entering this new kernel, we are ensured
that the neighborFreqs array is completely populated and ready
for access. Unfortunately the localNeighbors array associated
with each thread must be repopulated due to the fact it was
stored into registers and was lost when getNeighborFreqs
returned. The same process from the last kernel is used to get
each points’ neighbors. The next step in the ‘Get Neighbors’
process is to create a neighbor position array. Each index
is calculated by summing up the neighbor frequencies of all
previous points before that index, resulting in its position in the
neighbor array. Notice how the neighborPos array is created
directly with the results of neighborFreqs. This is why we
needed to ensure the entire neighborFreqs array is populated
before beginning the neighborPos process. We can then use the
neighborPos array to have each thread fill its point’s neighbors
into the correct foreseen position in the global neighbors array.
Completing this entails completing the entire ‘Get Neighbors’
process. We now have the ability to compare neighbors and
identify shared neighbors among points which is crucial for
assigning clusters.

Disjoint Set Data Structure: In the DBSCAN implementa-
tion, a disjoint set data structure is employed to properly merge
clusters. A disjoint set data structure has three operations:
making a new set containing a single element MAKE-SET,
finding the representative element of the set containing a given
element FIND-SET, and merging two sets into one UNION-
SET. The disjoint set data structure essentially maintains a
forest of trees, where each tree is a set. The root of each tree
is the representative element of the set. UNION-SET function
works by making the root of one tree a child of the root of
the other tree.

In the expandClusters kernel, which is run on the CPU,
the disjoint set data structure merges clusters. First, a disjoint
set is created with N elements, one for each data point. Then
the function iterates through each point. If a point has at least
minPts neighbors, then it forms a cluster. The function finds
the set representatives for the point and its neighbors using
FindSet, and merges them with UnionSet. The process ensures
that all points in a cluster are in the same set. After processing
all points, the final cluster labels are assigned based on the set
representative of each point using FindSet.

C. Optimization 1: Presorted Dataset

The implementation of this method uses a sorted dataset
as its input to enhance the time reduction in obtaining each
point’s neighbors. This input dataset must be sorted on one
user-specified dimension as provided within argument 6 of
the command line. For our dataset preparation, we utilized
Python’s Pandas library to presort our data with read csv and
dfSortby functions to read and sort any CSV file provided.
The dimension with the largest variance is recommended for
sorting to reduce the number of thread iterations.

Fig. 1. Example of finding neighbors on sorted dataset.

By following the same process of both kernels, this op-
timization now obtains neighbors pertaining to each thread
differently. In this case, each point neighbor is defined by
having a distance less than ϵ from another specified point.
Instead of comparing each thread’s point to every other dataset
point, a selective frame (or local array) of potential neighbors
are obtained in its place.

The distance formula ensures that the difference between
the sorted dimension of both specified points is greater than ϵ.
As such, only points with a difference in the sorted dimension
less than ϵ are potential neighbors, as can be seen in Fig. 1.
This process must occur by iterating in both directions from
the considered point for clustering purposes. This optimization

significantly reduces runtime as both kernels rely on obtaining
a local neighbors array. With the proper ϵ value, each thread
can perform up to 90% less work compared to the baseline
kernel.

Algorithm 1 Algorithm for Sorted Data Kernel
1: procedure getNeighborFreqs(dataset, ϵ, N, DIM, minPts,

neighborFreqs, neighborsArr, neighborPos)
2: if tid < N then
3: for all p0 with sortedDimensionDifference ≤ ϵ do
4: distance ← getDistance()
5: if distance ≤ ϵ then
6: numNeighbors ← numNeighbors + 1
7: neighborFreqs[tid] ← numNeighbors
8: end if
9: end for

10: end if
11: return
12: procedure getNeighborsArrs(dataset, ϵ, N, DIM, minPts,

neighborFreqs, neighborsArr, neighborPos)
13: if tid < N then
14: for all p0 with sortedDimensionDifference ≤ ϵ do
15: distance ← getDistance()
16: if distance ≤ ϵ then
17: storeNeighborLocally()
18: end if
19: end for
20: for p0 in neighborFreqs < tid do
21: startIndexInNeighborArr += neighborFreqs
22: end for
23: neighborPos ← startIndexInNeighborArr
24: for p0 in localNeighbors do
25: neighborsArr ← localNeighbors
26: end for
27: end if
28: return
29: procedure expandClusters(dataset, N, minPts, neighbor-

Freqs, neighborsArr, neighborPos, clusterLabels)
30: for all p0 in dataset do
31: if numNeighbors ≥ minPts then
32: expandClusterToNeighbors()
33: end if
34: end for
35: for p0 in dataset do
36: assignClusterID()
37: end for
38: return

Note that Algorithm 1 fundamentally works the same in
both the baseline and limited loop iterations implementations,
with minor differences as explained in their respective sec-
tions.

D. Optimization 2: Limited Loop Iterations

This implementation is a very slight, yet crucial change to
Optimization 1. In all previous modes, we are obtaining all

neighbors of each point. With the logic of this implementation,
we only obtain minPts neighbors for each point. minPts is
generally a small, one or two digit number that is provided
by the user. This variable defines what it means for a point to
be a core point. A core point is a point with at least minPts
neighbors. These core points share their cluster ID with all of
its neighbors. If a point has less than minPts neighbors and
is not neighbors with any core points, it is considered noise,
and does not belong to a cluster. We noticed that finding just
minPts neighbors would suffice for our clustering algorithm.
Finding more than minPts neighbors, generally leads to more
accurate clustering, but with the power of unionSets() from
our disjoint set data structure, we will still receive similarly
accurate results from Optimization 1.

Fig. 2. Un-clustered DBSCAN
Result of Engineered Dataset

Fig. 3. Clustered DBSCAN Result
of Engineered Dataset

E. NVIDIA Thrust Library Implementation Attempt

In this kernel, we aimed to utilize NVIDIA’s Thrust library
in order to more efficiently parallelize and expedite the cal-
culation and fetching of each point’s local neighbors for the
global neighbor array. Due to the size of the datasets used
in DBSCAN algorithms, computing and storing a Euclidean
distance matrix is not feasible. Rather than computing a
distance matrix, we opted for a ”global neighbors array” which
would hold each point in the dataset followed by all of its
neighbors (based on ϵ).

Each point finds its local neighbors within ϵ, stores them
in the global neighbor array, then sends that to the CPU for
clustering operations. In our project, we hoped to use Thrust
to expedite the process of finding the local neighbors of each
point rather than (how it was done in mode 2).

We hoped to make use of Thrust’s lower bound and
upper bound functions which find the smallest and largest
indices, respectively where the value passed in can be inserted
into the data provided without disrupting the ordering of the
array. This allows us to use a binary search that returns
an index in the array even if the element does not actually
exist in the array (see figure x). The pseudocode of the
getLocalNeighbors function that utilizes the Thrust library is
given in Algorithm 2.

The getLocalNeighbors function starts by taking in the data
(dataset), number of points being considered (N), epsilon (ϵ)
and the minimum points needed for a cluster (minPts). The

function then creates a thread for each point, and each thread
computes its lower (lowerBound) and upper (upperBound)
bounds based on epsilon (ϵ).

Then, in lines 5 and 6, we utilize Thrust’s built-in functions
for computing the lower and upper bounds as described
earlier, and stores these in lowerIndex and upperIndex
respectively. Once these have been computed, we copy the
range between lowerIndex and upperIndex and store it in a
local neighbors array for each point (localNeighbors).

Algorithm 2 Algorithm for obtaining local neighbors using
Thrust

1: function GetLocalNeighbors(dataset, minPts, ϵ, N)
2: for all ai in dataset do
3: lowerBound ← ai − ϵ
4: upperBound ← ai + ϵ
5: lowerIndex ← lower bound(dataset, lowerBound)
6: upperIndex ← upper bound(dataset, upperBound)
7: CopyLocalNeighbors(lowerIndex, upperIndex, local-

Neighbors)
8: end for
9: return

The first issue we encountered was understanding how to
incorporate Thrust into what we had already written. This
meant including the necessary Thrust libraries and updating
our Makefile. Once we were able to utilize the Thrust library,
we needed to rearrange how our data was stored. On import,
the CSV files are read in and stored in a linearized array row
by row, so point 1 occupies the first (dimension) places in the
array, and point 2 occupies the next (dimension) places and
so on.

Since Thrust’s lower bound and upper bound functions
expect a linearly sorted section of an array, we needed to
rearrange our dataset so that it was organized by dimension
rather than by N.

TABLE II: Example Dataset of 5 Points and 3 Dimensions

Variable Imported Data
[a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3, a4, b4, c4]

Rearranged Data
[a0, a1, a2, a3, a4, b0, b1, b2, b3, b4, c0, c1, c2, c3, c4]

Once the data was in the proper format, we had to figure
out how handle the data using Thrust. Thrust’s library comes
with both host and device vectors, which are to be used on the
CPU and GPU respectively. In this open-source library, you
cannot initialize device vectors directly on the GPU, and so we
had to initialize a device vector and pass it in as a parameter
to our GPU kernel.

Once in the kernel, we were able to write statements that
made calls to lower bound and upper bound by specifying

their occurrence on the device rather than the host. However,
the results were consistently 0 for the indices for both the
lower insertion location and the upper. Initially, we thought
this meant the data had not been properly transferred to the
device. As we continued researching the Thrust library and
what functions and data types are available in the library, we
discovered that the functionality for launching upper bound
and lower bound calls on the device have been deprecated
[14]. Please refer to section V for our comments about this.

IV. RESULTS

A. Experimental Methodology

Our platform consists of 4x Intel Xeon Gold 6132 2.6
GHz CPUs with 28 total physical cores. The platform is also
equipped with an NVIDIA Tesla V100 SXM2 16 GB GPU
and runs CUDA 12.3 [4]. The host code is written in C/C++.
All source code including the reference implementations are
compiled with the O3 optimization flag, and experiments are
averaged over three trials.

We would like the reader to also note the following about
the timings reported:

1. All timings reported are on the order of seconds.
2. The speedups given in the tables are with respect to the
baseline implementation (Mode 1) and are only given for the
fastest block size.
3. In tables III and IV, Mode 1 refers to the Baseline
implementation, Mode 2 refers to the Sorted Data
optimization, and Mode 3 refers to the Limited Loop
Iterations optimization. 4. Tables III and IV are tested using
the asteroid dataset, which contains 5,000,000 data points.
5. We have not reported any CPU metrics because the CPU
implementation was predicted to take days to complete the
process.
6. In table V, ’Freqs’ and ’Arr’ refer to each mode’s respective
getNeighborsFreqsXXX kernel and getNeighborsArrXXX
kernel.

TABLE III
PERFORMANCE OF IMPLEMENTATION AND OPTIMIZATION

Block Implementation
Size Mode 1 Mode 2 Mode 3
32 99.552 49.354 11.714
64 96.588 49.122 11.136

128 96.686 49.455 11.142
256 97.758 50.050 11.080
512 98.259 49.912 11.241
1024 99.386 49.829 11.086

Speedup∗ 1.0 2.017 8.965
∗Speedup is given for the fastest block size only

To better understand how our implementation performs, we
used NVIDIA’s Nsight Compute Profiler to analyze the perfor-
mance of the different modes and their respective kernels. Ta-
ble V provides insights into the achieved occupancy, memory
throughput, and compute throughput for each kernel in each
mode. Mode 1 shows a high achieved occupancy of 91.17%

TABLE IV
PERFORMANCE OF GPU KERNELS ONLY

Block Implementation
Size Mode 1 Mode 2 Mode 3
32 0.001586 0.001207 0.000392
64 0.001253 0.001226 0.000382

128 0.001001 0.001316 0.000403
256 0.001332 0.001209 0.000403
512 0.001444 0.001204 0.000382
1024 0.001281 0.001298 0.000394

Speedup∗ 1.0 1.314 4.046
∗Speedup is given for the fastest block size only

and 77.71% for the getNeighborFreqs and getNeighborsArr
kernels, respectively. However, the memory throughput and
compute throughput for Mode 1 are relatively lower compared
to Mode 2. Mode 2 exhibits the highest achieved occupancy,
with 94.36% for getNeighborFreqs and 97.9% for getNeigh-
borsArr. It also demonstrates improved memory throughput
and compute throughput compared to Mode 1, indicating better
utilization of GPU resources. Mode 3 has significantly lower
achieved occupancy and throughput metrics compared to the
other modes. Comparing the profiler metrics with the response
time tables, it can be observed that Mode 2 shows a significant
speedup over Mode 1, both in terms of total time and GPU
time. The higher achieved occupancy and improved throughput
metrics of Mode 2 contribute to its better performance. Mode 3
further improves upon Mode 2, achieving the lowest response
times overall. However, the profiler metrics for Mode 3 are
relatively lower, suggesting that factors other than occupancy
and throughput, like processing the minimum neighbors, play a
crucial role in its performance gains. Overall, the Nsight Com-
pute Profiler provides valuable insights into the performance
characteristics of the different modes. Mode 2 demonstrates
improved occupancy and throughput compared to Mode 1,
resulting in faster execution times. Mode 3, despite having
lower profiler metrics, achieves the best overall performance.

TABLE V
NVIDIA NSIGHT COMPUTE PERFORMANCE METRICS

Implementation
Kernel Metric Mode 1 Mode 2 Mode 3

Freqs
Achieved Occupancy 91.17 94.36 29.67
Memory Throughput 55.67 75.25 39.89
Compute Throughput 78.93 80.33 45.32

Arr
Achieved Occupancy 77.71 98.04 49.60
Memory Throughput 63.08 57.17 51.35
Compute Throughput 71.95 57.13 51.35

One of the concerns in our implementation of this algorithm
was how to verify that our results on the GPU were correct
- something that requires visualizing the data in some way.
To verify the validity of our implementation, we also wrote a
python script that could plot the dataset so that we’d be able
to visualize the clustering. Because of the large data size for
the test datasets, the python and CPU implementations could
not realistically validate the clustering on asteroid and snow

datasets. To validate that the CUDA and C implementations
are correct, they were tested with the the sorted smiley.csv
dataset which has the following parameters: N = 1199 data
points, ϵ = 1.0, and minPts = 5. This results in 3 clusters.
The original dataset:

V. DISCUSSION & CONCLUSIONS

In conclusion, we implemented the DBSCAN algorithm
with three distinct modes tailored to different optimization
strategies, each designed to efficiently cluster large datasets.

Our first implementation (Mode 1) was the baseline GPU
implementation, which parallelized the ‘Get Neighbors’ pro-
cess, resulting in significantly improved performance com-
pared to the CPU version. The second implementation (Mode
2) builds upon the baseline by utilizing a sorted dataset,
allowing for a more efficient neighbor search process. This
optimization drastically reduces the workload for each thread,
leading to further speedups. The third implementation (Mode
3) introduces a slight modification to Mode 2, but is able to
reduce this workload even further by setting a max number of
neighbors provided by the user. Despite lower profiler metrics,
Mode 3 achieves the best overall performance with a speedup
of over 8x that of our baseline kernels (Mode 1).

We tested our implementation on many datasets including
an asteroid data set containing the longitude and latitude of
5,000,000 asteroids in the Kuiper belt, and snow data with 12
dimensions! While validation against a Python implementation
was achieved with smaller datasets, the large-scale datasets
were left to be validated by data analysis. The consistency of
cluster labels against the neighbor arrays in our output proved
to be accurate.

In addition to our successful GPU kernel implementations,
we also attempted to further improve our performance by
utilizing NVIDIA’s Thrust library. Upon discovering the dep-
recated nature of calling Thrust’s lower and upper bound
functions on the GPU, we note here that the NVIDIA C++
Standard Library (of which Thrust is a part of) is an open
source project [3], and as such, a solution to the deprecated
functionality may be provided in the future, in which case,
we can pursue implementing Thrust’s library in the ways
described earlier in this paper. Overall, we are very pleased
with the outcome of this DBSCAN implementation.

ACKNOWLEDGMENT

We thank the National Centers for Environmental Informa-
tion for the Global Summary of the Year dataset, which we
refined for our snow dataset. We also thank Dr. Gowanlock
for his assistance in the implementation of this algorithm and
for the asteroid data that we also used.

REFERENCES

[1] A. Patwary, D. Palsetia, A. Agrawal, W. Liao, F. Manne, and A.
Choudhary, “A new scalable parallel DBSCAN algorithm using the
disjoint-set data structure,” 2012 International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2012,
doi: https://doi.org/10.1109/sc.2012.9.

[2] A. Prokopenko, D. Lebrun-Grandie, and D. Arndt, “Fast tree-based
algorithms for DBSCAN for low-dimensional data on GPUs,” arXiv.org,
Aug. 07, 2023. https://arxiv.org/abs/2103.05162. (accessed April 25,
2024)

[3] CCCL: CUDA C++ Core Libraries (2023), CCCL Devel-
opment Team. Accessed Apr 25, 2024. [Online]. Available:
https://github.com/NVIDIA/cccl

[4] “CUDA Toolkit Documentation 12.1,” docs.nvidia.com.
https://docs.nvidia.com/cuda/ (accesed May 06, 2024).

[5] “Dataset Overview — National Centers for Environmental In-
formation (NCEI),” www.ncei.noaa.gov. https://www.ncei.noaa.gov/
metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00947/html# (ac-
cessed April 25, 2024).

[6] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and L.
Rocha, “G-DBSCAN: A GPU Accelerated Algorithm for Density-based
Clustering,” Procedia Computer Science, vol. 18, pp. 369–378, 2013,
doi: https://doi.org/10.1016/j.procs.2013.05.200.

[7] H. Mustafa, E. Leal, and L. Gruenwald, “An Experimental Compar-
ison of GPU Techniques for DBSCAN Clustering,” Dec. 2019, doi:
https://doi.org/10.1109/bigdata47090.2019.9006169.

[8] M. Chen, X. Gao, and H. Li, “Parallel DBSCAN with Priority R-tree,”
Jan. 2010, doi: https://doi.org/10.1109/icime.2010.5477926.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise.” Available: https://cdn.aaai.org/KDD/1996/KDD96-037.pdf

[10] M. Gowanlock, “Hybrid CPU/GPU clustering in shared
memory on the billion point scale,” Jun. 2019, doi:
https://doi.org/10.1145/3330345.3330349.

[11] M. Gowanlock, C. M. Rude, D. M. Blair, J. D. Li, and V.
Pankratius, “A Hybrid Approach for Optimizing Parallel Cluster-
ing Throughput using the GPU,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 766–777, Apr. 2019, doi:
https://doi.org/10.1109/tpds.2018.2869777.

[12] M. Gowanlock, D. M. Blair, and V. Pankratius, “Optimizing Parallel
Clustering Throughput in Shared Memory,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 28, no. 9, pp. 2595–2607, Sep. 2017,
doi: https://doi.org/10.1109/tpds.2017.2675421.

[13] Madhav Poudel and M. Gowanlock, “CUDA-DClust+: Revisiting Early
GPU-Accelerated DBSCAN Clustering Designs,” Dec. 2021, doi:
https://doi.org/10.1109/hipc53243.2021.00049.

[14] “[NVBug 3298282] Device-side CDP launch of ‘thrust::upper bound‘
returns incorrect result. · Issue 767 · NVIDIA/cccl,” GitHub.
https://github.com/NVIDIA/cccl/issues/767 (accessed May 06, 2024).

APPENDIX A

This section outlines how to run the code as well as an
explicit outline of what parameters are expected. Our main
function takes in many arguments that must all be populated
in order for the algorithm to run.

The archive includes the following files:

dbscan allModes.cu
dbscan allModes.sh

dbscan.sh
Disjoint set.h

sorted smiley.csv
sorted AST2.csv
sorted AST1.csv

snowDataPreProcessed.csv

dbscan allModes.sh is the job script to run all the above
files, and contains different commented parameters for testing
the code.

dbscan.sh is the job script to run each mode separately
corresponding to the user selection.

These are run as directed below:

srun ./dbscan N DIM epsilon minPts filename sortedDim

N: the number of data points in the dataset
DIM: the number of dimensions. More specifically, the
number of attributes associated with each point. For example,
a database of library members has attributes ID, name, home
address, and email. This dataset has a dimension of 4.
Epsilon (ϵ): a radius that defines a neighbor. A circle is
drawn around each point with a radius of the supplied epsilon.
If another point falls within this circle, it is considered a
neighbor to that point. Identifying neighbors is crucial for the
clustering process. Note: too large of an epsilon may result
in a single cluster.
minPts: the number of neighbors that defines a core point. A
core point expands its cluster ID to all of its neighbors. Note:
too small of a minPts value may result in a single cluster.
fileName: name of the file stored in the current directory,
generally a .csv or .txt file.
sortedDim: the index of the dimension on which the dataset
is sorted.

